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ABSTRACT We report a systematic investigation of the optically excited vibrations in monolayer-protected

gold clusters capped with hexane thiolate as a function of the particle size in the range of 1.1—4 nm. The

vibrations were excited and monitored in transient absorption experiments involving 50 fs light pulses. For small

quantum-sized clusters (=2.2 nm), the frequency of these vibrations has been found to be independent of cluster

size, while for larger clusters (3 and 4 nm), we did not observe detectable optically excited vibrations in this

regime. Possible mechanisms of excitation and detection of the vibrations in nanoclusters in the course of the

transient absorption are discussed. The results of the current investigation support a displacive excitation

mechanism associated with the presence of finite optical energy gap in the quantum-sized nanoclusters. Observed

vibrations provide a new valuable diagnostic tool for the investigations of quantum size effects and structural

studies in metal nanoclusters.
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quantum size effect

etallic nanoscale materials with

a size close to the Fermi wave-

length of an electron have re-
cently received a great amount of
attention." ~* The research in this size re-
gime has been sparked by their appeal in
technological applications as well as the
fundamental thrust of scientific understand-
ing on the behavior of nanoscopic
materials.' 8 The acoustic response of
these materials has great potential for their
characterization®'® as well as for better
understanding of fundamental aspects of
quantum size effects.'” Acoustic modes and
their excitation characteristics in nanoma-
terials contain important information about
structure, geometry, and interactions with
the environment.?~'” An unambiguous
structural assignment of pristine clusters
Auy and Auy, in the gas phase, important
for catalytical applications, has been done
using vibrational spectroscopy.'® It was also
theoretically predicted that the nature of in-
ternal vibrational energy redistribution is a
key factor in promoting reactivity of small
gold clusters.! Vibration signature transfer
in the THz range has been predicted be-
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tween the polypeptide chain and gold
nanocluster using molecular dynamics
simulations.’>"3

Among several metal clusters, gold clus-
ters are the extensively investigated sys-
tems where the researchers observed a
transition from bulk-like properties to
molecular-like regimes, leading to quan-
tum confinement effects."**'”'® Gold clus-
ters comprising tens of atoms to several
hundred atoms have been synthesized by
stabilizing them with alkyl or aryl thiolates,
and they are often referred to as monolayer-
protected gold clusters (MPC).'® The great
complexity in the structural and electronic
properties of these clusters becomes more
apparent as their size decreases, leading to
an intense interest and debate regarding
the predictions of their properties.®*'8
MPCs'? offer an exciting possibility to fabri-
cate building blocks for potential applica-
tions in catalysis,>® nonlinear optics’ biola-
beling,® memory, and electronic effects
based on single electron charging
processes.*'?

Coherently excited “breathing” vibra-
tional mode for relatively large gold nano-
particles has been previously observed in a
transient absorption signal as well as in Ra-
man spectra.’>"® The period of these vibra-
tions was found to be from a few picosec-
onds to tens of picoseconds, and it was
inversely proportional to the particle size.
The impulsive heating of the particle lattice
after short pulse laser excitation was sug-
gested to be the origin of these
vibrations,'>16-20-21

Quantum size effects lead to a transi-
tion from bulk-like (metallic) to a molecular-
like behavior when the gold core size de-
creases down to the nanometer
scale.™*'7"1® Quantization of energy as well
as charge was observed for small size metal
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clusters, and the electrochemical measurements have
shown the size-dependent oxidation and reduction
peaks.*'® Although there has been extensive research
on the electrochemical and electron-transfer properties
on the small sized MPCs, the acoustical properties in
the quantum confinement regime remain unexplored.

In this paper, we have systematically investigated
the optically excited vibrations in monolayer-protected
gold clusters capped with hexane thiolate as a function
of the particle size in the range of 1.1—4 nm. For small
quantum-sized clusters, we found the frequency of
these vibrations independent of cluster size, while for
larger clusters (3 and 4 nm), we did not observe detect-
able optically excited vibrations in this regime. On the
basis of these observations, we suggest the displacive
excitation mechanism in quantum-sized clusters, which
is qualitatively different from that in larger
nanoparticles.

RESULTS AND DISCUSSION

The organic-soluble nanoclusters were synthesized
by using a modified Brust method®2~ 2> and solvent
fractionated to reduce size dispersion. The isolated MPC
core diameters were estimated from transmission elec-
tron microscopy (TEM) images which showed fairly nar-
row core size distributions (Figure 1): 1.1 = 0.2, 1.7 =
02,22 +0.2,3.0 = 0.3,and 4.0 = 0.1 nm.?* On the ba-
sis of the TEM core diameters, the clusters were as-
signed, respectively, to Au,s(SR)1s, Au144(SR)s0,
Ausz00(SR)o2, AUo76(SR)187, and Auz406(SR)326, Where SR is
hexane thiolate, which were determined by mass spec-
trometry or modeling.?> %’

The modified Brust method used in this work to pre-
pare nanoclusters is essentially the same as the one in
ref 25, where the structures and compositions of MPCs
were thoroughly determined by a number of analytical
techniques, including HR-TEM, small-angle X-ray scat-
tering, XPS, thermogravimetric analysis (TGA), etc. The
cluster compositions were determined by TGA and el-
emental analysis. The numbers of gold atoms and
ligands are average ones and not perfectly accurate
for relatively large clusters with core diameters =2.2
nm.?*> Recent studies provided the accurate composi-
tions of small clusters.?6 3"

Shown in Figure 2 are the optical absorption spec-
tra obtained for Au MPCs in hexane. Absorption span-
ning the visible to near-infrared region is seen for Au,s
with distinct maxima around 675 and 410 nm and the
ultraviolet region. Observed absorption spectra
matched well with the previous reports and are as-
cribed to the quantized nature of the gold
clusters.4,18,24,25,28,31

Time-resolved degenerate transient absorption
studies have been carried out utilizing a pump—probe
setup based on a cavity dumped Ti:sapphire laser sys-
tem with a repetition rate of 38 kHz and a 20 fs pulse
width.3233 This system possesses good noise character-
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istics, allowing the sensitivity for relative transient ab-
sorption in the 1077 range at low pump pulse energies
<0.5 nJ/pulse (less than 0.3 absorbed photons per
MPC). We have investigated the degenerate transient
absorption dynamics at 415 nm as a function of the
gold cluster size. For larger size clusters exhibiting a sur-
face plasmon resonance (SPR) band (3 and 4 nm), the
pump—probe profile showed a rise-time feature fol-
lowed by smooth exponential decay typical for larger
size range.>*3* A very different behavior in transient ab-
sorption dynamics and spectra has been observed for
2.2 nm clusters and smaller when compared to 3 nm
(Augge) clusters (Figure 3). A subpicosecond oscillatory
feature has been clearly detected in transient absorp-
tion for small gold clusters. Oscillatory features in the
picosecond and subpicosecond time range have been
found in transient absorption signals of semiconductors
and semimetals'® as well as in photoelectron spectros-
copy and multiphoton ionization signals of very small
pristine metal clusters.'®3° Coherently excited
“breathing” vibrational mode has been previously ob-
served in transient absorption signal for relatively large
gold nanoparticles.>'® The period of these vibrations
was found in the order of picoseconds to tens of pico-
seconds and was inversely proportional to the particle
size.”'® The excitation of these vibrations was assigned
to the impulsive heating of the particle lattice after
short pulse laser excitation.'® This mechanism does
not allow excitation of vibrations with a short period in
the subpicosecond range (which is expected for small
particles) due to finite picosecond electron—phonon
coupling time (~1 ps).">?%3* Indeed, the oscillations in
transient absorption experiments have not yet been re-
ported for relatively small gold nanoparticles in the
range of 1.1—8 nm."” In the present investigation, we
did not observe any oscillatory features for 3 or 4 nm
clusters. However, for small clusters of 1.1, 1.7, and 2.2
nm, the oscillatory structure has unexpectedly ap-
peared (Figure 3). Multiple scans with different samples
(including pure solvent), excitation and probe polariza-
tions, power levels, and delay line scanning rates were
performed to ensure the absence of the experimental
artifacts. Oscillatory feature was clearly reproducible for
all three small MPCs (1.1, 1.7, and 2.2 nm).

Analysis of the oscillations observed in the current
experiments gave a period of ~450 fs (2.2 THz). The ob-
served frequency (~74 cm™') compares well to a low-
frequency peak of vibrational density of states theoreti-
cally calculated for gold clusters'>3”~3° and is close
the acoustic phonon density peak for the bulk gold.*
Similar oscillatory feature has been recently reported for
bound excited state of Aus in a femtosecond photoelec-
tron spectroscopy experiment®® and has been ascribed
to the vibrational wavepacket motion.?> The theoretical
simulation for Aus predicted a period of 420 fs, while
the experimental result gave a period of 315 fs;*> both
are quite close to the value that has been observed for
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Figure 1. TEM images and corresponding histograms of the core diameters of hexane thiolate coated (a) Auys, (b) Auyss, (€)
Ausgg, (d) Augze, and (e) Auyses MPCs. Scale bar = 50 nm. TEM images were obtained with JEOL JEM-1230.

the present MPCs despite the size difference. Also, simi-
lar frequency (~80 cm™") Fourier component was re-
cently obtained from the transient absorption signal of
Auyslig™ MPCs.*!

As we mentioned above, impulsive heating mecha-
nism cannot explain the excitation of relatively high fre-
quency vibration in small clusters. In order to quantita-
tively analyze the oscillatory feature observed in
transient absorption signal for small clusters and gain

i\ m ] .
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better understanding of the possible mechanism, we
have performed the multiexponential fits of the decay
profiles and then investigated the residuals in detail.
Analysis of the residuals to the best fit multiexponen-
tial decay (Figure 4) indicated a cosine-type oscillation
(with max negative deviation at zero time, Figure 4,
dashed line) in our experiment.

This is a characteristic feature for the displacive exci-
tation mechanism of coherent phonons, which was ob-
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Figure 2. Optical absorption spectra of gold MPCs used in
the experiment.
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served in femtosecond transient absorption signals in
semiconductors and semimetals for the phonons in the
same frequency range'* as well as in molecular sys-
tems.*? After the impulsive excitation, the disturbed
electronic system comes to equilibrium in a short time
compared to the response time of the nuclear system,
resulting in new equilibrium nuclear displacements.’*
The excitation of a superposition of vibrationally excited
states in this area of potential surface generates the
wavepacket motion.*? These pump-induced coherent
oscillations modulate the sample transmission through
the modulation of the energy gap, thus making the os-
cillations for the probe pulse intensity a function of
the delay time visible in the experiment. The change

in transmission AT(t)/T in semiclassical description can
be written as'*

A$Q:=Mwmﬂfat—rme—%ﬂdr+

2
[ oo
Nw ———— G(t — r){exp(—k T) —
p¢+@—mgﬁ g

Seofar s ()
1+ &cos Qt + tan o dr (1)

where G(t) is a pulse autocorrelation function, kg is the
excited state decay rate, w, is the pump pulse energy
per unit area, wy is the angular frequency of the vibra-
tional mode, vy is the damping constant for the vibra-
tional mode, Q) = \/wj — ¥% kg = kg — vy, and N, M are
constants related to the system dielectric function re-
sponse to electronic excitation. It is seen from this ex-
pression that, in the case of relatively small oscillation
damping and long excited state lifetime, the transient
absorption oscillating component has cosine character
with phase ® = tan™"(ky/Q)) approaching zero."* We
have performed the least-squares fit analysis of the ex-
perimental residuals to the multiexponential fit to the
decay curve (Figure 4). This analysis has provided us
with the lifetime, frequency of the oscillations, and their
phase with respect to cosine for different MPCs. For all
three samples of 1.1, 1.7, and 2.2 nm, we have obtained
about the same period of 450 =+ 30 fs and the phase
@ scattered in the range of —25 to +9°, with no obvi-
ous correlation to the MPC size. This proves cosine-type
oscillations typical for displacive origin of the vibra-
tions, which have been observed in transient
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Figure 3. Transient absorption dynamics of gold MPCs of different sizes: (a) 1.1 nm, (b) 1.7 nm, (c) 2.2 nm, (d) 3 nm (solid
lines — best fits; see text). Instrument response function is shown in (d) (dash-dot line).
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Figure 4. Analysis of the residuals to the best fit multiexponential decay of transient absorption signals. Best fit results to the residuals
for different sizes are also shown (red solid lines). Dashed line shows the extension of the best fit function to zero time region.

N

absorption.*#? An important point is that the band
gap is a prerequisite for these types of vibrations to be
launched and detected by femtosecond pulses in the
transient absorption experiment. It makes the observed
oscillations a valuable indicator of the band gap open-
ing."”

Another mechanism of the excitation of the vibra-
tions in metal nanoparticles that could be considered
for transient absorption experiment is the hot-electron
pressure.*® This mechanism is fast enough to be able to
produce the correct phase of vibrations observed in
our transient absorption experiments.**** However,
thermal pressure of electrons should initiate the breath-
ing mode vibration of the entire gold core, the fre-
quency of which is essentially size-dependent.**~*°
This is in disagreement with our observations (Figure
5). In addition, the oscillations in the transient absorp-
tion signal abruptly disappear for larger sizes of 3 and
4 nm (see Figure 3), which is also difficult to rationalize
within the hot-electron pressure mechanism of vibra-
tion excitation.

Calculations of vibrational modes and density of vi-
brational states in gold clusters have been performed
by different groups.?” 3 All of these papers report two
peaks of phonon density of states (DOS) with a low-
frequency peak located near 2 THz, which is close to
the vibrational frequency detected in our experiment.
The calculations also demonstrated the enhancement
of the vibrational DOS at low frequencies for small clus-

34

Frequency (THz)
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Figure 5. Acoustic vibration frequency size dependence
(half-filled circles, this work). Solid triangles are frequencies
of the “breathing” vibrational modes previously observed
for larger gold particles.”>?" Solid brown line is the classical
mechanic calculations for the elastic gold sphere.'>2'4%
Horizontal blue solid line is a guide to the eye.

A\l\T\\&) VOL. 4 = NO.6 = VARNAVSKI ET AL.

ters as compared to that for bulk metal.®'%3”~4° How-
ever, the vibrational frequency observed in the current
experiment (2.2 THz) is closer to the main peak of the
DOS for nanoclusters, not to the low-frequency tail
mostly associated with the surface atoms.?” ~*° Calcula-
tion of the fractional contributions to DOS from core
and surface atoms for Au;; also showed much stron-
ger contribution of core gold atoms to the DOS peak
near 2.2 THz as compared to those from the shell.*® On
the other hand, independence of size (Figure 5) may in-
dicate the surface gold contribution. More experimen-
tal work and theoretical modeling is required to better
spatially assign the observed vibrations. Excitation
mechanism suggests that this mode should not lower
the symmetry of the lattice, for example, A; breathing
mode;’* however, this is a local mode rather than a size-
dependent breathing mode of the entire particle ob-
served for larger nanoparticles. Polarization-sensitive
measurements indicated a depolarized character of
both transient absorption response and oscillatory fea-
ture (Figure 6). We found the oscillatory feature inde-
pendent of the polarization (perpendicular or parallel
to pump polarization) of the probe pulse. This observa-
tion supports high symmetry of the vibrational mode
excited in the experiments.

In semiconductor particles, acoustic vibrational
modes contribute to the transient absorption experi-
ments because changes produced by the electronic ex-

parallel polarization
----- perpendicular polarization 7
~ 10J D=2.2nm ]
=) | i
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Figure 6. Transient absorption profiles for MPC (diameter
2.2 nm) with probe beam polarization perpendicular and
parallel to pump polarization. Additional peak at zero posi-
tion for parallel polarization is a coherent spike within the
pulse time overlap area.
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citation modify the band gap.'® The system returning
to the new equilibrium produces the oscillations
around the recent position.'* Importantly, this new
electronic (density) configuration should be long-lived
as compared to the period of oscillations in order for
this optical excitation mechanism to work.'® For the
bulk metal and large nanoparticles, the intraband elec-
tron equilibration is too fast as compared to the vibra-
tional period to support this mechanism.

However, if the energy gap emerges, the excited
electron configuration lives much longer to maintain
this new equilibrium position for many periods of vibra-
tions as it takes place in semiconductors and molecu-
lar systems.'**? Hence, the appearance of the oscilla-
tions for small MPCs can be correlated to the
emergence of an optical energy gap near the Fermi
level.*'”

It is important to note that the frequency of the op-
tically excited vibrations observed in this work does not
appreciably vary with the MPCs size in the range of
1.1—2.2 nm (Figure 5, half-filled circles). This is very dif-
ferent from the situation in larger particles, where criti-
cally size-dependent breathing mode for the entire par-
ticle was excited in time-resolved optical
experiments.'>'%2%2! Figure 5 shows the vibrational
frequency as a function of the inverse diameter. The

EXPERIMENTAL SECTION

Sample Characterization. Investigated gold clusters with hexane
thiolates as capping agent have been synthesized by following
a modified Brust's synthesis published elsewhere.??~2° Transmis-
sion electron microscope (TEM) images of the synthesized gold
clusters shown in Figure 1 provide the cluster diameters, and the
number of gold atoms comprising the nanoparticles is obtained
from the analysis. It can be observed from Figure 1 that all of
the clusters have pretty good monodispersity, and the error bars
in the sizes are fairly small. It has been shown that the stable clus-
ter that has been previously mentioned to be Ausg(SR)4 is actu-
ally Au,s(SR)16, and its detailed structure has been
determined.?®> 26231 Also, more accurate composition struc-
ture for Aus44(SR)so has been recently suggested.’2®

Optical Absorption Measurements. Optical absorption measure-
ments on the investigated samples have been carried out with
an Agilent (model #8341) spectrophotometer.

Transient Absorption Measurements. Time-resolved degenerate
transient absorption studies have been carried out utilizing a
cavity dumped Ti:sapphire laser system, which was spectrally
centered at 830 nm with a repetition rate of 38 kHz and 20 fs
pulse width.3? The fundamental is passed through a nonlinear
BBO crystal, and the second harmonic is generated, which is then
directed to the pump—probe section. The degenerate
pump—probe setup was a transient absorption configuration
of a three-pulse photon echo setup based on the cavity dumped
laser system previously described in detail.>2*® This transient ab-
sorption system possessed very good noise characteristics, al-
lowing the sensitivity for relative transient absorption in the 1077
range at very low pump pulse energy <0.5 nJ/pulse (less than
0.3 absorbed photons per MPC). This is very important as the
transient absorption signal for small clusters is relatively weak
due to the absence of surface plasmon resonance. Low pump
pulse energy of ~0.5nJ is also important to measure the true
electron system cooling profile in larger clusters possessing sur-
face plasmon resonance as this profile is excitation-intensity-
dependent in this case.?'* The probe beam of the same wave-
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straight line indicates the frequency dependence for
the elastic homogeneous sphere modes (Lamb
model®). The frequencies observed for larger gold par-
ticles by other authors'>?' (shown by triangles) agree
with this model quite well.'>"2°2" Vibrations observed
in this work deviate from both the elastic sphere model
and the trend observed for larger particles well be-
yond the experimental error (indicated by error bars
on Figure 5). This once again confirms that the vibra-
tions observed in this work for quantum-sized gold
MPCs are different in nature.

CONCLUSION

In summary, we have observed optically excited vi-
brations in time-resolved experiments for gold MPCs
in the size range of 1.1 nm (Auss) to 2.2 nm (Auspg),
where quantum size effects become essential. It has
been found that both the origin and the excitation/
detection mechanism of these vibrations are very differ-
ent from those observed for larger gold
nanoparticles.'®'> Our results support a displacive exci-
tation mechanism associated with the presence of a fi-
nite optical energy gap in these quantum-sized nano-
clusters. These vibrational modes excited and detected
in a wide size range of quantum-sized MPCs have a
great potential for better MPC characterization.

length is passed through an optical delay line and the lens, and
then it is overlapped with the pump beam in the sample cell and
is detected by the photodiode. Modulated probe signal was
measured with the use of a lock-in amplifier synchronized to op-
tical chopper in the pump beam and recorded as a function of
delay line on a PC. The width of the instrument response func-
tion was ~65 fs.3%46
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